Abstract

An efficient way for the control of spin wave propagation in a magnetic medium is the use of periodic patterns known as magnonic crystals (MCs). However, the fabrication of MCs especially bi-components, with periodicity on nanoscale, is a challenging task due to the requirement for sharp interfaces. An alternative method to circumvent this problem is to use homogeneous ferromagnetic film with modified periodically surrounding. The structure is also suitable for exploiting nonreciprocal properties of the surface spin waves. In this work, we demonstrate that the magnonic band structure forms in thin permalloy film due to dynamical magnetostatic coupling with Ni stripes near its surface. We show, that the band gap width can be systematically tuned by the changing interlayer thickness between film and stripes. We show also the effect of nonreciprocity, which is seen at the band gap edge shifted from the Brillouin zone boundary and also in nonreciprocal interaction of propagating spin waves in Py film with the standing spin waves in Ni stripes. Our findings open possibility for further investigation and exploitation of the nonreciprocity and band structure in magnonic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.