Abstract

Artificial spin ice (ASI) structures have significant technological potential as reconfigurable metamaterials and magnetic storage media. We investigate the field/frequency-dependent magnetic dynamics of a kagome ASI made of 25-nm-thick permalloy nanomagnet elements, combining magnetoresistance (MR) and microscale ferromagnetic resonance (FMR) techniques. Our FMR spectra show a broadband absorption spectrum from 0.2 GHz to 3 GHz at H below 0.3 kOe, where the magnetic configuration of the kagome ASI is in the multidomain state, because the external magnetic field is below the obtained coercive field H c ∼ 0.3 kOe, based on both the low-field range MR loops and simulations, suggesting that the low-field magnetization dynamics of kagome ASI is dominated by a multimode resonance regime. However, the FMR spectra exhibit five distinctive resonance modes at the high-field quasi-uniform magnetization state. Furthermore, our micromagnetic simulations provide additional spatial resolution of these resonance modes, identifying the presence of two high-frequency primary modes, localized in the horizontal and vertical bars of the ASI, respectively; three other low-frequency modes are mutually exclusive and separately pinned at the corners of the kagome ASI by an edge-induced dipolar field. Our results suggest that an ASI structural design can be adopted as an efficient approach for the development of low-power filters and magnonic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.