Abstract
The spin wave (SW) ballistic transport properties are investigated for nanojunction systems composed of thin [Co1−cGdc]ℓ′[Co]ℓ[Co1−cGdc]ℓ′ layered nanostructures between cobalt leads. The nanojunction is considered as a homogeneous random alloy of concentrations c on an hcp crystal lattice. ℓ corresponds to the numbers of the hcp (0001) atomic planes per given layer. The phase field matching theory (PFMT) is used to investigate the spin dynamics of the nanojunction system in the virtual crystal approximation (VCA), valid in particular for submicroscopic SW wavelengths. The model calculations yield the spin modes localized on the nanojunction, normal to its plane, in their propagating and resonant forms. The eigenvectors of these modes are calculated for certain cases to illustrate the spin precession configurations on the nanojunction. The VCA-PFMT approach yields a general model, and is used to calculate the SW ballistic scattering and transport across the nanojunction for spin waves incident from the Co leads onto the nanojunction. The results demonstrate resonance Fano assisted maxima in the SW transmission spectra due to interactions between incident lead spin waves and localized spin resonances on the nanojunction. It is shown that these maxima change with nanojunction thickness and alloy concentration. The spectral transmission results for low frequency SWs are of specific interest, in particular they correspond to submicroscopic wavelengths which present an interest for current research of magnonic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.