Abstract

We theoretically investigate possible quantum Hall phases and corresponding edge states in graphene by taking a strong magnetic field, Zeeman splitting M, and sublattice potential Δ into account but without spin–orbit interaction. It was found that for the undoped graphene either a quantum valley Hall phase or a quantum spin Hall phase emerges in the system, depending on relative magnitudes of M and Δ. When the Fermi energy deviates from the Dirac point, the quantum spin-valley Hall phase appears and its characteristic edge state is contributed only by one spin and one valley species. The metallic boundary states bridging different quantum Hall phases possess a half-integer quantized conductance, like e2/2h or 3e2/2h. The possibility of tuning different quantum Hall states with M and Δ suggests possible graphene-based spintronics and valleytronics applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.