Abstract
Moiré superlattices in twisted bilayer graphene and transition-metal dichalcogenides have emerged as a powerful tool for engineering novel band structures and quantum phases of two-dimensional quantum materials. Here we investigate Moiré physics emerging from twisting two independent hexagonal optical lattices of atomic (pseudo-)spin states (instead of bilayers) that exhibit remarkably different physics from twisted bilayer graphene. We employ a momentum-space tight-binding calculation that includes all range real-space tunnelings and show that all twist angles θ≲6° can become magic and support gapped flat bands. Because of the greatly enhanced density of states near the flat bands, the system can be driven to superfluidity by weak attractive interaction. Strikingly, the superfluid phase corresponds to a Larkin-Ovchinnikov state with finite momentum pairing that results from the interplay between flat bands and interspin interactions in the unique single-layer spin-twisted lattice. Our work may pave the way for exploring novel quantum phases and twistronics in cold atomic systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.