Abstract
We study the impact of the magnetic field angle on the oscillation frequency of a nanocontact spin torque oscillator (STO) in magnetic fields up to 2.1 T. A model based on a single nonlinear, nonpropagating spin wave mode is found to explain the experimental data. We observe oscillation frequencies as high as 46 GHz in high magnetic fields applied normal to the film plane, and we are able to extrapolate the maximum expected operating frequency to beyond 65 GHz for in-plane magnetic fields. The STO signal remains surprisingly strong at these conditions, which opens up for possible millimeter-wave applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.