Abstract

Alkaline oxygen reduction reaction (ORR) is critical to electrochemical energy conversion technology, yet the rational breaking of thermodynamic inhibition for ORR through spin regulation remains a challenge. Herein, a Mott-Schottky catalyst consisting of Er2 O3 -Co particles uniformly implanted into carbon nanofibers (Er2 O3 -Co/CNF) is designed for enhancing ORR via spin-selective coupling. The optimized Er2 O3 -Co/CNF affords a high half-wave potential (0.835V vs reversible hydrogen electrode, RHE) and onset potential (0.989 VRHE ) for the ORR surpassing individual Co/CNF and Er2 O3 /CNF. Theoretical calculations reveal the introduction of Er2 O3 optimizes the electronic structure of Co through Er(4f)-O(2p)-Co(3d) gradient orbital coupling, resulting in significantly enhanced ORR performance. Through gradient orbital coupling, the induced spin-up hole in Co 3d states endows the Er-O-Co unit active site with a spin-selective coupling channel for electron transition. This favors the decrease of the energy gap in the potential-limiting step, thus achieving a high theoretical limiting potential of 0.77 VRHE for the Er2 O3 -Co. Moreover, the potential practicability of Er2 O3 -Co/CNF as an air-cathode is also demonstrated in Zn-air batteries. This work is believed to provide, new perspectives for the design of efficient ORR electrocatalysts by engineering spin-selective coupling induced by rare-earth oxides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.