Abstract

Chiral-induced spin selectivity (CISS) effect provides innovative approach to spintronics and quantum-based devices for chiral materials. Different from the conventional ferromagnetic devices, the application of CISS effect is potential to operate under room temperature and zero applied magnetic field. Low dimensional chiral perovskites by introducing chiral amines are beginning to show significant CISS effect for spin injection, but research on chiral perovskites is still in its infancy, especially on spin-light emitting diode (spin-LED) construction. Here, the spin-QLEDs enabled by 2D chiral perovskites as CISS layer for spin-dependent carrier injection and CdSe/ZnS quantum dots (QDs) as light emitting layer are reported. The regulation pattern of the chirality and thickness of chiral perovskites, which affects the circularly polarized electroluminescence (CP-EL) emission of spin-QLED, is discovered. Notably, the spin injection polarization of 2D chiral perovskites is higher than 80% and the CP-EL asymmetric factor (gCP-EL ) achieves up to 1.6×10-2 . Consequently, this work opens up a new and effective approach for high-performance spin-LEDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.