Abstract

Spin-polarized transport through a one-dimensional metal/poly-BIPO/metal model junction with the soliton–antisoliton separation is investigated. Nonlinear spin and charge densities are considered in magnetic poly-BIPO molecule, as a neutral soliton and charged antisoliton with different separations. The calculations are performed based on Su–Schrieffer–Heeger Hamiltonian which is extended with Heisenberg and Hubbard Hamiltonians to include the spin and electron–electron interactions. The spin-dependent transport properties are obtained within the framework of the Landauer–Buttiker formalism based on Green’s function theory. This study demonstrates the reduction in current and spin polarization as the separation between soliton and antisoliton centers is increased. We have found that when the soliton–antisoliton separation is less than 14 sites, the spin polarization is almost 100 % plato, over the voltage ranges more than 0.3 V. Also the energy differences between the soliton–antisoliton mid-gap states for up- and down-spin electrons and the Fermi energy of the system are reduced. However, for the soliton–antisoliton separation lengths more than 14 sites, these quantities tend to constant values with enhancement of the distance between the excitation centers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.