Abstract

The ac conductance of a finite tubular two-dimensional electron gas is studied in the presence of the Rashba spin-orbit interaction. When the tube is coupled to two reservoirs, that interaction splits the steps in the dc current, introducing energy ranges with spin-polarized currents. For this setup, we calculate the current-current correlations (the noise spectrum) and show that the existence of these dc spin-polarized currents can be deduced from the shot noise. We also find that the Wigner-Smith time delay is almost unaffected by the spin-orbit interaction. When the tube is coupled to a single reservoir, we calculate the quantum capacitance and the charge-relaxation resistance, and find that they exhibit singularities near the openings of new channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.