Abstract

The fine structure and dynamics of magnetic domain walls in ultrathin films with perpendicular magnetization, in the presence of a secondary anisotropy, is analysed owing to micromagnetics. Two cases are considered, a cubic anisotropy typical for (111) oriented garnet epitaxial films, and an orthorhombic anisotropy as found in, e.g., Co/W(110) films. The statics is solved first, showing that, in general, domain walls are not of the pure Bloch type. The dynamics under the spin Hall effect induced by a current flowing in an adjacent layer is then monitored. Finite and non-negligible domain wall velocities are predicted in both cases, in the absence of Dzyaloshinskii-Moriya interactions, with distinct behaviours regarding the current density and its orientation with respect to the secondary anisotropy axes. The relevance of these results to recent reports of current-driven domain wall dynamics in insulating ultrathin garnet films, capped with platinum, is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.