Abstract
Time-dependent density functional theory (TDDFT) coupled to the relativistic two-component zeroth-order regular approximation, both available in the last version of the ADF package, have been successfully used to simulate X-ray absorption spectra of TiCl4, Ti(eta5-C5H5)Cl3, and Ti(eta5-C5H5)2Cl2 in terms of their oscillator strength distributions. Besides allowing a first principle assignment of Ti 1s, Cl 1s, and Ti 2p (L2,3 edges) core excitation spectra, theoretical outcomes provide a rationale for deviations from the expected L3/L2 branching ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.