Abstract
In this work we perform electronic structure calculations to unravel the origin of spin-orbit couplings (SOCs) in open-shell molecules. For that, we select systems displaying di or polyradical character, e.g., trimethylene, and analyze the changes in the magnitude of SOC constants along molecular distortions of ethylene and in the presence of intermolecular interactions between open and closed-shell moieties in the O2-C2H4 system. Calculations were performed by using nonrelativistic wave functions obtained with the restricted active space configuration interaction (RASCI) method, in conjunction with a recent implementation for the calculation of SOC based on the spin-orbit mean field approximation. Our results demonstrate the suitability of RASCI in the calculation of SOCs of open-shell systems, while providing a deep understanding of the relationship between couplings and the nature of the electronic states. Moreover, we introduce a new definition of the SOC constant for the study of molecular aggregates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.