Abstract

AbstractMeasuring the obliquities of exoplanet-host stars provides invaluable diagnostic information for theories of planetary formation and migration. Most of these results have so far been obtained by measuring the Rossiter--McLaughlin effect, clearly favoring systems that harbor hot Jupiters. While it would be extremely helpful to extend these measurements to long-period and multiple-planet systems, it is also true that the latter systems tend to involve smaller planets, making it ever so difficult to apply such techniques. Asteroseismology provides a powerful method of determining the inclination of the stellar spin axis from an analysis of the rotationally-induced splittings of the oscillation modes. This provides an estimate of the obliquity independently of other methods. The applicability of the asteroseismic method is determined by the stellar properties and not by the signal-to-noise ratio of the transit data. Here we present a recap of the spin-orbit geometry, explain how the asteroseismic method works, and review previous applications of the method to exoplanet-host stars.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.