Abstract

We describe the spin polarization–induced chirogenic electropolymerization of achiral 2-vinylpyridine, which forms a layer of enantioenhanced isotactic polymer on the electrode. The product formed is enantioenriched in asymmetric carbon polymer. To confirm the chirality of the polymer film formed on the electrode, we also measured its electron spin polarization properties as a function of its thickness. Two methods were used: First, spin polarization was measured by applying magnetic contact atomic force microscopy, and second, magnetoresistance was assessed in a sandwich-like four-point contact structure. We observed high spin-selective electron transmission, even for a layer thickness of 120 nm. A correlation exists between the change in the circular dichroism signal and the change in the spin polarization, as a function of thickness. The spin-filtering efficiency increases with temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.