Abstract

Collective spin dynamics of two dipole-coupled nanomagnets in spin-flop tunnel junctions are studied experimentally and theoretically. The measured GHz magnetization oscillations reveal several collective spin-precessional modes. Analytical macrospin and numerical micromagnetic models of the spin-flop dynamics are developed, which provide a detailed explanation of the observed frequency spectra in terms of optical, acoustical, and micromagnetic modes in the antiparallel, parallel, and scissor magnetization states of the junctions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.