Abstract

We report 23Na nuclear magnetic resonance (NMR) and zero-field (ZF) and longitudinal-field (LF) muon spin relaxation (μSR) measurements of the depleted hyperkagome compounds Na4−xIr3O8 (x = 0.3 and 0.7), which undergo an insulator-semimetal transition as a function of x. The 23Na spin-lattice relaxation rates, , follow a T2.5 power law behavior at accessible temperatures of T = 120–350 K. A substantial temperature dependence of indicates the presence of gapped excitations at elevated temperatures through the transition to a semimetallic phase. ZF-μSR results reveal that hole-doping leads to a melting of quasi-static order to a dynamically fluctuating state. The very slow muon depolarization rate which varies hardly with temperature indicates that spins are close to an itinerant limit in the largest doping x = 0.7. The dynamic relaxation rates extracted from the LF-μSR spectra show a three-dimensional diffusive transport. Our combined NMR and μSR results suggest the occurrence of intriguing spin and charge excitations across the insulator-semimetal transition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.