Abstract

We have characterized CdS/CdSe/CdS quantum-dot quantum wells using time-resolved Faraday rotation (TRFR). The spin dynamics show that the electron g-factor varies as a function of quantum well width and the transverse spin lifetime of several nano-seconds is robust up to room temperature. As a function of probe energy, the amplitude of the TRFR signal shows pronounced resonances, which allow one to identify individual exciton transitions. While the TRFR data are inconsistent with the conduction and valence band level scheme of spherical quantum-dot quantum wells, a model in which broken spherical symmetry is taken into account captures the essential features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.