Abstract

ABSTRACTClear evidence for high efficiency spin-polarized electron transport across ferromagnet/semiconductor Schottky barrier interfaces was observed in Ni80Fe20/GaAs structures. Circularly polarized light was used to excite electrons with a spin polarization perpendicular to the film plane. At negative bias, an almost constant difference between the helicity-dependent photocurrent obtained for the magnetization parallel and perpendicular to the photon helicity was detected. An effective asymmetry, A, was also estimated from the helicity-dependent photocurrent difference, attributed to spin-polarized electron tunneling from GaAs to NiFe (spin filtering). A decreases with increasing photon energy, which is consistent with the energy-dependence of the asymmetry of photoexcited electrons in GaAs. Weak spin injection from NiFe to GaAs was seen at a bias corresponding to the Schottky barrier height, which is likely to occur via a ballistic process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.