Abstract
Quantum Magnetism Strongly interacting electrons lined up along a string can experience the so-called spin-charge separation, where the electrons “split” into effective carriers of spin and charge, which then move independently. This phenomenon has been observed, somewhat indirectly, in solids. Hilker et al. show spin-charge separation in a direct way by using a one-dimensional (1D) array of cold atoms, playing the role of electrons, whose degrees of freedom of spin and charge can be monitored using a fermionic quantum gas microscope. Empty sites in the 1D lattice moved freely without disturbing the underlying antiferromagnetic order. Science , this issue p. [484][1] [1]: /lookup/doi/10.1126/science.aam8990
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.