Abstract

The spin and charge Nernst effects in a four-terminal ferromagnetic graphene are theoretically investigated by using the nonequilibrium Green’s function method. The results of this study reveal that (1) when the four leads are normal graphene, the pure charge Nernst effect can be obtained under the assistance of magnetic field, (2) when the ferromagnetic graphene leads are in a parallel configuration of the magnetizations, both the spin and charge Nernst effects can be generated simultaneously, it is worth noting that, for the first two cases, the Nernst effect cannot be obtained without the [Formula: see text] direction magnetic field, and (3) the pure spin Nernst effect (without charge Nernst effect) emerged only by the temperature difference for the antiparallel configuration. In addition, the magnitude of the spin and charge Nernst coefficients can be tuned by adjusting the strength of magnetic flux and exchange field. All the results indicate that the proposed multi-terminal graphene nanosystem is a promising candidate for spin caloritronics devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.