Abstract

PURPOSE/OBJECTIVE(S)Post-operative spine SBRT presents unique clinical challenges. Spinal hardware produces CT and high-field strength MRI artifacts that obscure visualization of the spinal cord and unresected disease. Existing workflows incorporate additional invasive procedures with CT myelogram and quality control for these procedures can introduce uncertainty into SBRT planning. Reducing metallic imaging artifact with a low-field strength (0.35 T) MRI integrated into a MR-Linac (MRL) may facilitate superior visualization of the spinal cord, improved target delineation and treatment localization. The primary objective is to determine the feasibility of MRL-based simulation workflow to facilitate MR-guided post-operative spine SBRT without the need for CT myelogram or CT-based target delineation. MATERIALS/METHODSA single-institution, single-arm interventional feasibility study is planned. A total of 10 patients who underwent surgical resection of solid tumor spinal metastases with an indication for post-operative SBRT will be enrolled and undergo radiation planning and treatment on a MRL platform that combines a 6MV Linac and 0.35 T on-board MRI system. Enrolled subjects will undergo CT and MR simulation followed by standard-of-care post-operative spine SBRT and follow-up spine imaging every 3 months. RESULTSThe primary endpoint is feasibility of MR-guided post-operative spine SBRT without CT myelogram. Feasibility is defined as > 70% of participants with clinically acceptable visualization/delineation as determined by blinded dual neuroradiologist review for clinically acceptable visualization/delineation of organs-at-risk (OARs) and target volume(s). Exploratory endpoints involve radiation dosimetry analysis of OARs and target volumes as well as documenting the use of adaptive planning. Radiation site progression-free survival will be recorded at 6-months after SBRT. CONCLUSIONIf feasible, an MRL-based workflow for post-operative spine SBRT represents a patient-centric approach to improve efficiency, minimize treatment delays, and avoid invasive procedures that may improve clinical management of solid tumor spinal metastases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.