Abstract

Nanophotothermal therapy based on nanoparticles (NPs) that convert near-infrared (NIR) light to generate heat to selectively kill cancer cells has attracted immense interest due to its high efficacy and being free of ionizing radiation damage. Here, for the first time, we have designed a novel nanohybrid, silver-iron oxide NP (AgIONP), which was successfully tuned for strong absorbance at NIR wavelengths to be effective in photothermal treatment and dual-imaging strategy using MRI and photoacoustic imaging (PAI) in a cancer model in vivo and in vitro, respectively. We strategically combine the inherent anticancer activity of silver and photothermal therapy to render excellent therapeutic capability of AgIONPs. In vitro phantoms and in vivo imaging studies displayed preferential uptake of folate-targeted NPs in a cancer mice model, indicating the selective targeting efficiency of NPs. Importantly, a single intravenous injection of NPs in a cancer mice model resulted in significant tumor reduction, and photothermal laser resulted in a further substantial synergistic decrease in tumor size. Additionally, biosafety and biochemical assessment performed in mice displayed no significant difference between NP treatment and control groups. Overall, our folic acid AgIONPs displayed excellent potential in the simultaneous application for safe and successful targeted synergistic photothermal treatment and imaging of a cancer model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.