Abstract

Ethnopharmacological relevanceSpica prunellae (SP) is a well-known traditional Chinese medicinal herb with properties of antihypertensive, antihyperglycemic, antiviral, anti-inflammatory, and antitumor activities. This herb is also popularly consumed as a food additive in some drinks or other food forms for treating pyreticosis. Rosmarinic acid (RA) is the marker compound from SP, which possesses anti-oxidative and anti-inflammatory functions. Aim of the studyThis study aims to investigate the regulatory effect of the water extract of SP (WESP) and RA on efflux transports (ETs), including P-glycoprotein (p-gp), multidrug resistance-associated protein 2 (MRP2), and breast cancer resistance protein (BCRP) in HepG2 cell line. Results would provide beneficial information for the proper application of SP in clinics. Materials and methodsHepG2 cells were treated with different doses of the tested drugs for 24 or 96h. MTT assay was used to examine cell viability. The protein and mRNA levels of the ETs were measured by using Western blot and real-time PCR, respectively. Reporter assay was used to study the antioxidant response element (ARE)-luciferin activity by using HepG2-C8 cells, which were generated by transfecting plasmid containing ARE-luciferin gene into HepG2 cells. The transport activities of ETs were tested by using substrate probes. ResultsWESP significantly (p<0.05) increased the expression of ETs in a dose-dependent manner. The increase caused by WESP was stronger than RA alone. Both WESP and RA promoted the translocation of nuclear factor E2-related factor-2 (Nrf2) from cytoplasm to the nucleus as well as significantly (p<0.05) enhanced the ARE-luciferin activity. WESP and RA also enhanced the efflux activity of P-gp and MRP2, accompanied by marked increase (p<0.05) in the intracellular ATP levels. ConclusionsWESP could significantly induce the expression of ETs through the activation of Nrf2-mediated signaling pathway in HepG2 cells. RA could be one of the active compounds responsible for the induction. WESP and RA also enhanced the efflux activity of P-gp and MRP2, and the increased intracellular ATP levels were likely involved in this induction. Results of this study provide a better understanding of the regulation of SP on ETs and the underlying molecular mechanism. Results indicated that potential drug–drug interactions may exist when SP is co-administered with other substrate drugs that are transported via the ETs, especially P-gp and MRP2, thereby providing beneficial information for appropriate use of SP for clinical therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.