Abstract
Phytosphingosine-1-phosphate (P1P) is a signaling sphingolipid that regulates various physiological activities. However, little is known about the effect of P1P in the context of reproduction. Thus, we aimed to investigate the influence of P1P on oocyte maturation during porcine in vitro maturation (IVM). Here, we report the expression of S1PR1-3 among P1P receptors (S1PR1-4) in cumulus cells and oocytes. When P1P was administered at concentrations of 10, 50, 100, and 1,000 nM during IVM, the metaphase II rate was significantly increased in the 1,000 nM (1 μM) P1P treatment group. Maturation rate improvement by P1P supplementation was observed only in the presence of epidermal growth factor (EGF). Oocytes under the influence of P1P showed decreased intracellular reactive oxygen species levels but no significant differences in glutathione levels. In our molecular studies, P1P treatment upregulated gene expression involved in cumulus expansion (Has2 and EGF), antioxidant enzymes (SOD3 and Cat), and developmental competence (Oct4) while activating extracellular signal-regulated kinase1/2 and Akt signaling. P1P treatment also influenced oocyte survival by shifting the ratio of Bcl-2 to Bax while inactivating JNK signaling. We further demonstrated that oocytes matured with P1P displayed significantly higher developmental competence (cleavage and blastocyst [BL] formation rate) and greater BL quality (total cell number and the ratio of apoptotic cells) when activated via parthenogenetic activation (PA) and in vitro fertilization. Despite the low levels of endogenous P1P found in animals, exogenous P1P influenced animal reproduction, as shown by increased porcine oocyte maturation as well as preimplantation embryo development. This study and its findings are potentially relevant for both human and animal-assisted reproduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.