Abstract

The endothelial cell (EC) barrier disruption has been implicated in vascular leakage and pulmonary edema. Many reports have shown that the EC barrier dysfunction is regulated by the sphingosine-1-phophate (S1P)/S1P receptor-1 (S1PR1) axis. Identifying downstream effectors for the S1P/S1PR1 axis in pulmonary vasculature has been limited by mixed populations in vitro cultures that do not retain physiological EC phenotype and complex of tedious proteomics. In this study, we used a combination of in vivo biotinylation and liquid chromatograph tandem mass spectrometry on three mouse models of S1pr1 expression, namely normal, knockout (KO) and high, to identify EC membrane proteins whose cell-surface expression is S1pr1-dependent. EC-specific KO of S1pr1 caused severe pulmonary vascular disruption and reduction of many membrane proteins on ECs. Using the MaxQuant software we were able to identify novel membrane targets of S1pr1, for instance, Cd105 and Plvap, by comparison with their membrane expressions among the three EC model systems. Moreover, regulation of Cd105 and Plvap by S1pr1 were validated with Western blot and immunostaining in vivo and in vitro. Our data suggest that S1pr1 dictates cell-surface localization of several apical membrane proteins in ECs. Our results are insightful for development of novel therapeutics to specifically target EC barrier function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.