Abstract

There has been recent debate over stratigraphic markers used to demarcate the Anthropocene from the Holocene Epoch. However, many of the proposed markers are found only in limited areas of the world or do not reflect human impacts on the environment. Here we show that spheroidal carbonaceous particles (SCPs), a distinct form of black carbon produced from burning fossil fuels in energy production and heavy industry, provide unambiguous stratigraphic markers of the human activities that have rapidly changed planet Earth over the last century. SCPs are found in terrestrial and marine sediments or ice cores in every continent, including remote areas such as the high Arctic and Antarctica. The rapid increase in SCPs mostly occurs in the mid-twentieth century and is contemporaneous with the ‘Great Acceleration’. It therefore reflects the intensification of fossil fuel usage and can be traced across the globe. We integrate global records of SCPs and propose that the global rapid increase in SCPs in sedimentary records can be used to inform a Global Standard Stratigraphic Age for the Anthropocene. A high-resolution SCP sequence from a lake or peatland may provide the much-needed ‘Golden Spike’ (Global Boundary Stratotype Section and Point).

Highlights

  • There has been recent debate over stratigraphic markers used to demarcate the Anthropocene from the Holocene Epoch

  • There has been much debate over the timing of the Anthropocene; some authors have used archaeological evidence to suggest that the rise of human impacts began in the early to mid-Holocene3, ~2 millennia ago[4], or from the time of the industrial revolution[1]

  • This volcanic event is registered in chemical profiles from Greenland and Antartica ice core records; tephra from this eruption is only found in Asia[9]

Read more

Summary

Methods

We carried out a detailed analysis of published literature to assess the occurrence of spheroidal carbonaceous particles (SCPs) in sediment and peat profiles and ice cores across the world (Table 1). All sources were compiled by country and continent and the established dates of the first occurrence and the onset of rapid increase of SCPs were noted (based on independent dating methods including 210Pb determinations and tephra). A Kernal density function was used to estimate the probability density function of the date of rapid increase in SCPs. Two adjacent cores from Malham Tarn Moss Yorkshire Dales, Northern England (54.0975946°, − 2.1730828°) were taken using a Russian-type D section corer. Calendar ages for the first occurrence, rapid increase, and peak concentration of SCP were assigned to the record[20,25]. Water table depth reconstruction was carried out on subfossil testate amoebae using a transfer function based on a local training set[29]

Author Contributions
Additional Information
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.