Abstract

AbstractWe show that generalised geometry gives a unified description of maximally supersymmetric consistent truncations of ten‐ and eleven‐dimensional supergravity. In all cases the reduction manifold admits a “generalised parallelisation” with a frame algebra with constant coefficients. The consistent truncation then arises as a generalised version of a conventional Scherk–Schwarz reduction with the frame algebra encoding the embedding tensor of the reduced theory. The key new result is that all round‐sphere geometries admit such generalised parallelisations with an frame algebra. Thus we show that the remarkable consistent truncations on S3, S4, S5 and S7 are in fact simply generalised Scherk–Schwarz reductions. This description leads directly to the standard non‐linear scalar‐field ansatze and as an application we give the full scalar‐field ansatz for the type IIB truncation on S5.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.