Abstract
SPH(Smoothed Particle Hydrodynamics) is a gridless Lagrangian technique that is useful as an alternative numerical analysis method used to analyze high deformation problems as well as astrophysical and cosmological problems. In SPH, all points within the support of the kernel are taken as neighbours. The accuracy of the SHP is highly influenced by the method for choosing neighbours from all particle points considered. Typically a linked-list method or tree search method has been used as an effective tool because of its conceptual simplicity, but these methods have some liability in anisotropy situations. In this study, convex hull algorithm is presented as an improved method to eliminate this artifact. A convex hull is the smallest convex set that contains a certain set of points or a polygon. The selected candidate neighbours set are mapped into the new space by an inverse square mapping, and extract a convex hull. The neighbours are selected from the shell of the convex hull. These algorithms are proved by Fortran programs. The programs are expected to use as a searching algorithm in the future SPH program.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Korea Institute of Military Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.