Abstract
Crowdsourcing platforms like Amazon’s Mechanical Turk provide fast and effective solutions of collecting massive datasets for performing tasks in domains such as image classification, information retrieval, etc. Crowdsourcing quality control plays an essential role in such systems. However, existing algorithms are prone to get stuck in a bad local optimum because of ill-defined datasets. To overcome the above drawbacks, we propose a novel self-paced quality control model integrating a priority-based sample-picking strategy. The proposed model ensures the evident samples do better efforts during iterations. We also empirically demonstrate that the proposed self-paced learning strategy promotes common quality control methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.