Abstract

Spermidine (Spd) has been correlated with various physiological and developmental processes in plants, including pollen tube growth. In this work, we show that Spd induces an increase in the cytosolic Ca(2+) concentration that accompanies pollen tube growth. Using the whole-cell patch clamp and outside-out single-channel patch clamp configurations, we show that exogenous Spd induces a hyperpolarization-activated Ca(2+) current: the addition of Spd cannot induce the channel open probability increase in excised outside-out patches, indicating that the effect of Spd in the induction of Ca(2+) currents is exerted via a second messenger. This messenger is hydrogen peroxide (H₂O₂), and is generated during Spd oxidation, a reaction mediated by polyamine oxidase (PAO). These reactive oxygen species trigger the opening of the hyperpolarization-activated Ca(2+) -permeable channels in pollen. To provide further evidence that PAO is in fact responsible for the effect of Spd on the Ca(2+) -permeable channels, two Arabidopsis mutants lacking expression of the peroxisomal-encoding AtPAO3 gene, were isolated and characterized. Pollen from these mutants was unable to induce the opening of the Ca(2+) -permeable channels in the presence of Spd, resulting in reduced pollen tube growth and seed number. However, a high Spd concentration triggers a Ca(2+) influx beyond the optimal, which has a deleterious effect. These findings strongly suggest that the Spd-derived H₂O₂ signals Ca(2+) influx, thereby regulating pollen tube growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.