Abstract
Cellular neural networks (CNNs) are an efficient tool for image analysis and pattern recognition. Based on elementary cells connected to neighboring units, they are easy to install in hardware, carrying out massively parallel processes. This brief presents a new model of CNN with memory devices, which enhances further CNN performance. By introducing a memristive element in basic cells, we carry out different experiments, allowing the analysis of the functions traditionally carried out by the standard CNN. Without modifying the templates considered by the scientific literature, this simple variation originates a significant improvement in ∼30 % of performances in pattern recognition and image processing. These progresses were experimentally calculated on the time the system requires to reach a fixed point. Moreover, the different role that each parameter has in the developed method was also analyzed to better understand the complex processing ability of these systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.