Abstract
Cells employ a myriad of signaling circuits to detect environmental signals and drive specific gene expression responses. A common motif in these circuits is inducible auto-activation: a transcription factor that activates its own transcription upon activation by a ligand or by post-transcriptional modification. Examples range from the two-component signaling systems in bacteria and plants to the genetic circuits of animal viruses such as HIV. We here present a theoretical study of such circuits, based on analytical calculations, numerical computations, and simulation. Our results reveal several surprising characteristics. They show that auto-activation can drastically enhance the sensitivity of the circuit's response to input signals: even without molecular cooperativity, an ultra-sensitive threshold response can be obtained. However, the increased sensitivity comes at a cost: auto-activation tends to severely slow down the speed of induction, a stochastic effect that was strongly underestimated by earlier deterministic models. This slow-induction effect again requires no molecular cooperativity and is intimately related to the bimodality recently observed in non-cooperative auto-activation circuits. These phenomena pose strong constraints on the use of auto-activation in signaling networks. To achieve both a high sensitivity and a rapid induction, an inducible auto-activation circuit is predicted to acquire low cooperativity and low fold-induction. Examples from Escherichia coli's two-component signaling systems support these predictions.
Highlights
Biological organisms employ a variety of signaling networks to respond to changes in environmental conditions
two-component signaling (TCS) systems typically consist of two proteins: a sensor histidine kinase (HK) and a response regulator (RR)
The phosphate group of the HK is subsequently transferred to the RR, which in its phosphorylated form usually acts as a transcription factor
Summary
Biological organisms employ a variety of signaling networks to respond to changes in environmental conditions. An interesting class of examples is given by the two-component signaling (TCS) systems, which are ubiquitous in bacteria and plants [1]. TCS systems typically consist of two proteins: a sensor histidine kinase (HK) and a response regulator (RR). The HK is a transmembrane protein that auto-phosphorylates in response to a ‘‘signal’’. The RR activates its target genes only when the signal is present. TCS systems are the predominant signaling motifs in bacteria; E. coli, for instance, features about 30 TCS systems [1]. In about half of the cases, the RR activates its own expression. The functions of this positive feedback are not well understood [2,3]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.