Abstract

Sites with varying geometric features were analyzed to develop the 85th percentile speed prediction models for car and sports utility vehicle (SUV) at 50 m prior to the point of curvature (PC), PC, midpoint of a curve (MC), point of tangent (PT) and 50 m beyond PT on four-lane median divided rural highways. The car and SUV speed data were combined in the analysis as they were found to be normally distributed and not significantly different. Independent parameters representing geometric features and speed at the preceding section were logically selected in stepwise regression analyses to develop the models. Speeds at various locations were found to be dependent on some combinations of curve length, curvature and speed in the immediately preceding section of the highway. Curve length had a significant effect on the speed at locations 50 m prior to PC, PC and MC. The effect of curvature on speed was observed only at MC. The curve geometry did not have a significant effect on speed from PT onwards. The speed at 50 m prior to PC and curvature is the most significant parameter that affects the speed at PC and MC, respectively. Before entering a horizontal curve, drivers possibly perceive the curve based on its length. Longer curve encourages drivers to maintain higher speed in the preceding tangent section. Further, drivers start experiencing the effect of curvature only after entering the curve and adjust speed accordingly. Practitioners can use these findings in designing consistent horizontal curve for vehicle speed harmony.

Highlights

  • The speed at which vehicles operates in free-flow condition is known as the vehicle operating speed [1]

  • The developed speed prediction models indicate that the curve length has a significant effect on the 85th percentile speed of cars and sports utility vehicle (SUV) at locations 50 m prior to point of curvature (PC), PC and midpoint of a curve (MC)

  • The primary aim of this study is to understand the effect of highway geometry on vehicle operating speed of cars and SUVs along the horizontal curves on a four-lane median divided rural highway

Read more

Summary

Introduction

The speed at which vehicles operates in free-flow condition is known as the vehicle operating speed [1]. It is generally represented by the 85th percentile speed. Researchers had extensively studied the influence of highway geometry on vehicle operating speed and developed operating speed prediction models for different highway segments such as the midpoint of the curve (MC), preceding tangent sections and point of curvature (PC). These models vary largely in modeling technique, explanatory variables considered and its coefficients. No single model is universally acceptable and none of these studies provide an integrated model to predict vehicle speed along a horizontal curve starting from the preceding tangent to the succeeding tangent section

Objectives
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.