Abstract
The objective of this paper is to demonstrate the significance of combining different features present in the glottal activity region for statistical parametric speech synthesis (SPSS). Different features present in the glottal activity regions are broadly categorized as F0, system, and source features, which represent the quality of speech. F0 feature is computed from zero frequency filter and system feature is computed from 2-D based Riesz transform. Source features include aperiodicity and phase component. Aperiodicity component representing the amount of aperiodic component present in a frame is computed from Riesz transform, whereas, phase component is computed by modeling integrated linear prediction residual. The combined features resulted in better quality compared to STRAIGHT based SPSS both in terms of objective and subjective evaluation. Further, the proposed method is extended to two Indian languages, namely, Assamese and Manipuri, which shows similar improvement in quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.