Abstract

The spectral and the temporal behavior of high-intensity negatively chirped femtosecond pulses in normally dispersive media at different input parameters are experimentally studied. The spectrum of the pulse is reshaped due to strong self-actions. The pulse is self-compressed, instead of broadening, accompanied with the spectral FWHM bandwidth shortened. Steepening of the leading edge of the pulse and spectral red-shift are observed in the experiment. The numerical simulation shows that the result is in agreement with the experimental result.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.