Abstract

ABSTRACTWe report a detailed study of the photoluminescence (PL) intensity of bound excitons (BE:s) in silicon, related to shallow impurities and deep complex defects, as a function of DC and high frequency AC (9GHz) electric fields. Two experimental approaches are presented. The first involves a simultaneous recording of PL and photocurrent under pulsed DC excitation. The second utilizes the optically detected cyclotron resonance (ODCR) technique, which allows detection of cyclotron resonance (CR) via the resonancetransition- induced changes of BE PL intensity. The mechanism responsible for the PL changes is shown to be the impact ionization of BE:s by hot free carriers. Effects of sample inhomogeneities in these experiments are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.