Abstract

Synthetic diamond is one of the most promising wide band-gap materials for fabrication of solar-blind photo-sensors and radiation tolerant particle detectors. However, defects introduced during crystal growth and processing, causing carrier trapping and recombination, limit the functional characteristics of devices made of this material. In order to reveal the predominant defects, pulsed photo-ionization (PPI), Fourier transform infrared (FTIR) and electron spin resonance (ESR) spectroscopic measurements have been performed on diamond samples grown by chemical vapor deposition (CVD) and high pressure-high temperature (HPHT) methods. Measured photo-activation energies have been assigned to point defects associated with nitrogen and nickel impurities as well as to their complexes involving vacancies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.