Abstract

Due to the growing interest in nanocomposites, a molecular characterization of these materials is essential for the understanding of their properties and for the development of new materials. Spectroscopic techniques that bring information at a molecular level are unavoidable when characterizing polymers, fillers and composites. Selected examples of the application of fluorescence, solid-state nuclear magnetic resonance (NMR), infrared and Raman spectroscopies, illustrate the potential of these techniques for the analysis of the filler surface, the evaluation of the state of filler dispersion in the host matrix, the extent of interaction between the polymer and the filler particles or the dynamics of polymer chains at the polymer–filler interface.

Highlights

  • Nanometer-scale particles such as spheres, plates and rods dispersed in a host polymeric medium have generated intense research in the development of rubber nanocomposites because they have been shown to significantly enhance the mechanical, electrical and thermal properties of the pristine polymer

  • In conventional composites, such as those filled with silica or carbon black, high elastic modulus and high tensile strength are obtained in the case of a strong interface, while a strong increase in the composite initial modulus followed by a slight increase in stress in a large range of deformations are observed in the case of a weak interface

  • This effect, which may be regarded as a result of poor dispersion, is better visualized through the dynamic mechanical properties of the composites, where it can be seen that the strain dependence of the storage modulus exhibits a strong non-linear behavior known as the Payne effect

Read more

Summary

Introduction

Nanometer-scale particles such as spheres, plates and rods dispersed in a host polymeric medium have generated intense research in the development of rubber nanocomposites because they have been shown to significantly enhance the mechanical, electrical and thermal properties of the pristine polymer These nanoparticles are expected to yield a high interfacial area between the organic and inorganic phases only in the case of a good dispersion of the filler particles within the polymeric matrix. The steep increase in the elastic modulus observed at low deformations in the absence of polymer–filler interactions, is attributed to agglomerated filler structures yielding at high filler contents the formation of a filler network throughout the polymer matrix This effect, which may be regarded as a result of poor dispersion, is better visualized through the dynamic mechanical properties of the composites, where it can be seen that the strain dependence of the storage modulus exhibits a strong non-linear behavior known as the Payne effect. The fundamental principles of the various molecular spectroscopies and the information provided by these characterization techniques, can be found in reference [40] and in the references therein

Fluorescence Spectroscopy
16 K 16 increase in Tg in of T the
Solid-State
Infrared and Raman Spectroscopy
Infrared Spectroscopy
Raman Spectroscopy
10. Comparison
Findings
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.