Abstract
The gas-phase infrared spectra of bromodifluoromethane, CHBrF(2), have been examined at medium resolution in the range of 200-9500 cm(-1). The assignment of the absorptions in terms of fundamental, overtone, combination, and hot bands, assisted by quantum chemical calculations is consistent all over the region investigated. Accurate values of integrated band intensities have also been determined for the first time in the range of 500-6000 cm(-1). Structural and molecular spectroscopic properties have been calculated at high level of theory. The coupled cluster CCSD(T) method in conjunction with a hierarchical series of correlation consistent basis sets has been employed and extrapolation to complete basis set has been considered for the equilibrium geometry. Vibrational analysis based on the second order perturbation theory has been carried out with the ab initio anharmonic force constants calculated using the second order Moller-Plesset perturbation as well as coupled cluster [CCSD(T)] theory. A good agreement between the computed and the experimental data also including the integrated infrared band intensities has been obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.