Abstract

In the present work, an argon microwave (2.45 GHz) plasma flame created at the end of a surface-wave-sustained discharge column in a helium environment has been experimentally studied. This is a plasma with new possibilities because under some experimental conditions it expands, being less contracted than the plasma flame created in open air. The new expanded discharge could offer additional advantages for applications in which larger extensions of plasma were required. The expansion phenomenon of this plasma flame was studied under different experimental conditions. In every case, the characteristic parameters of this expanded plasma such as electron density, electron and gas temperatures, or density population of excited atomic levels were measured by using optical emission spectroscopic techniques. From these results, the main advantages of this plasma source were pointed out.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.