Abstract
The special characteristics of Raman spectroscopy (relative insensitivity to water, non-destructive detection, sensitivity to bio- and geosignatures, molecular structural composition information, etc.) together with the development of miniaturized Raman spectrometers make the consideration of this technique for future robotic landers on planetary surfaces, particularly Mars, a very interesting option. The development of light and rugged Raman spectrometers limits the possible scope of the instrumentation which has particular importance in the recognition of biomolecular and mineral signatures. In this work, we evaluate the spectral resolution and scan time parameters and the effect that they have on the Raman spectra of extremophilic biomolecules, together with the wavenumber ranges which are critical for the detection of life signals. This is of vital relevance for the design of miniaturized Raman spectrometer systems. From our results, we conclude that for extraterrestrial biological signatures unambiguous Raman spectral identification provided with a minimum of 16 cm−1 spectral resolution is required for the most significant biosignature wavenumber range in the 1700–700 cm−1 region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.