Abstract

The presence of expired and unused Sulfacetamide (SA) drug in water led to a global need for the development of effective advanced method for the quantitative analysis and for minimizing its occurrence in the nature. To find new effective photochemical decomposition method close to that obtained by the well-known Fenton reaction, the photodegradation of SA was investigated in presence of dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and/or other common additives at two different wavelengths (365 and 256nm). The role of DDQ in the degradation process of SA was evaluated in comparison to the other investigated π-acceptor systems (Chloranilic acid (CHL) and Picric acid (PA)). While the photodegradation process of SA was hardly to proceed in the absence of a catalyst and/or additive, addition of DDQ and NaNO2 to the solution of SA induced decomposition of about 94% of SA within 25min upon the exposure to light source at 256nm. On the other hand, SA was quantitatively analyzed by recording the absorbance of its charge transfer (CT) products with DDQ, CHL and PA at a certain wavelength. CHL is preferred with concentrated samples of SA, while PA is recommended for diluted samples of SA. SA→DDQ has a widely range of stability over the pH range of 4.5-12.0. While SA→CHL is stable only in the acidic medium (pH=4.8-5.6), SA→PA is steady in the basic medium (pH=7.5-11.0). The nature of the DDQ CT complex was investigated in the solid state. The electronic structures of the complexes were studied by calculating the time dependent density functional theory (TDDFT) spectra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.