Abstract

In this paper, we have reported a novel method to synthesize nanoporous hydroxyapatite (HAP) powders by freezing organic–inorganic soft solutions. The formation of porous and crystalline HAP nanopowder was achieved via calcining the samples at 600 °C followed by sintering at temperatures ranging from 900 °C to 1100 °C. The samples were analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopic (SEM) techniques. The results showed the formation of a carbon free nanoporous hydroxyapatite powders due to the decomposition of organic template enclosing the precipitated HAP. It was also observed that the rapid grain growth with retainment of pores while the crystallinity of the HAP nanopowder increased with the increase in sintering temperature which is substantiated from the XRD and SEM results. Such organized porous materials can act as a better biomaterial for bone tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.