Abstract
Functionalization of the imidazolium (Im+) cationic component of ionic liquids (ILs) with ether chains affords the possibility of tuning their properties through manipulation of the resulting interion and intramolecular interactions. Herein, we quantify these interactions at the molecular level through analysis of the vibrational spectra displayed by size-selected and cryogenically cooled ions. These spectra are obtained using the "tagging" approach carried out with photofragmentation tandem mass spectrometry. In the isolated cations, we find that the oxygen atom on the ether chain binds exclusively to the acidic C(2)H position on the Im+ ring. Upon complexation with BF4- to form the ternary (ether-MIm+)2(BF4-) cation, however, the less acidic C(4,5)H groups also participate as contact points for the ionic assembly, in contrast to the behavior of the closely related (EMIm+)2(BF4-) system. These experimental results support the conclusions derived from earlier X-ray scattering and molecular dynamics results on bulk ILs regarding interactions with the ring CH groups and their implications on tuning the viscosities of this class of functionalized ILs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.