Abstract
The bis(diphosphine)nickel catalyst first investigated by DuBois and co-workers [DuBois, M. R.; DuBois, D. L. Chem. Soc. Rev. 2009, 38, 62] is arguably one of the most promising molecular catalysts for hydrogen production. It features a low overpotential and, in its most recent variation, a high turnover number of 105 s–1 [Helm, M. L.; Stewart, M. P.; Bullock, R. M.; DuBois, M. R.; DuBois, D. L. Science 2011, 333, 863]. The complex features two reversible one-electron reductions. It is believed that all accessible oxidation states (2+, 1+, 0) of nickel are involved in the proposed catalytic cycle. In this article we focus on the paramagnetic NiI state, for which few experimental studies have been performed. By a combination of modern EPR and quantum chemical methods, it is established that the stable NiI species does not feature a hydride ligand. Furthermore, hydrogen evolution already starts upon addition of acid to the NiI state even without the presence of additional reducing equivalents. The implications for the catalytic cycle are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.