Abstract

The light-scattering properties of surface materials on Mars are typically modeled using in situ spectrophotometric imaging sequences taken at multiple times of day to provide sufficient phase coverage. Herein, we report analyses of observations acquired at one time of day but under varying emission angles using the Mars Hand Lens Imager (MAHLI) on the robotic arm of the Mars Science Laboratory (MSL) rover as a goniometer. A multiple-viewpoint data set was acquired on Sol 544 by manipulating the arm to provide MAHLI images from 20 arm positions, all centered at the same location and from a near-constant distance of 1 m from the surface, permitting a phase angle coverage from ∼8 to 100°. From these images, we constructed a digital terrain model of the scene, and used it in combination with atmospheric scattering models to remove the diffuse components of radiance from surface units. Radiative transfer models using Hapke theory were conducted using the direct radiance components from specific rock and soil units. Despite the relatively limited number of observations, our modeled Hapke parameters were well-constrained for terrain types such as soils and certain types of rocks that were common within the scene, but the errors increased for rock types with fewer observations. Results from one-term and two-term Henyey-Greenstein phase functions show the soil units to be more backscattering than rocks, consistent with previous photometric studies of martian landing sites. Overall, we find that the MAHLI goniometer sequences can produce reasonable and consistent photometric results, providing a new and efficient means of acquiring spectrophotometric data by arm cameras on rovers such as MSL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.