Abstract

A simple, sensitive, and rapid flow-injection spectrophotometric method was developed for the determination of trace amounts of selenium(IV). The method is based on the oxidation reaction of 3-methyl-2-benzothiazolinone hydrazone hydrochloride (MBTH) by selenium(IV) followed by the coupling reaction with chromotropic acid (4.5-dihydroxy naphthalene-2.7-disulphonic acid) in a basic medium (phosphate buffer, pH 10.5) to give a pink derivative with λmax 530 nm that is stable for more than 7 days at 35°C. The reaction and flow conditions of the full experimental design were optimized. A detection limit (2s) of 0.25 μg/L Se(IV) was obtained at a sampling rate of 10 samples per hour. Beer’s law is obeyed for a Se(IV) concentration range of 0.05–0.5 μg/mL at the wavelength of maximum absorption. The detailed study of various interference ions indicates that the method is highly selective. The method was successfully applied to the determination of traces of selenium(IV) in various water samples. The results obtained were in good agreement with those obtained by the reported methods at the 95% confidence level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.