Abstract
Magnesium can be reversibly deposited electrochemically from solutions of ethereal solvents, with Grignard reagents (RMgX) or complexes of Mg(AX 3− n R n+1 ) 2 stoichiometry as the electrolytes (A=Al, B; X=Cl, Br; R=alkyl or aryl groups). These processes are far from being simple reactions of the Mg/Mg ++ couple, since the above electrolytes in solutions have complicated structures in which the ether molecules play an important stabilization role. In addition, Mg deposition processes in all of the above solutions are accompanied by adsorption phenomena. The surface chemistry of magnesium electrodes was studied in situ by FTIR spectroscopy, using an internal reflectance mode. The electrolyte solutions studied included tetrahydrofuran (THF) solutions of the RMgX electrolytes (R=butyl, ethyl, methyl benzyl, and X=Cl, Br); Mg(AlCl 2BuEt) 2; Mg(AlCl 3Bu) 2 and Mg(BPh 2Bu 2); Bu, Et, Ph=butyl, ethyl and phenyl groups, respectively. It was clear from these studies that Mg electrodes do not develop stable passivation in these solutions (i.e. formation of surface films). The nature of the adsorbed species in the above systems is discussed, based on the spectral results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.