Abstract

The intrinsic spectral line widths of defect-related transitions in quantum-confined semiconductor nanocrystals are often difficult to estimate using ensemble measurements because the extent of inhomogeneous broadening due to particle size distributions is not known precisely. To address this problem, we performed spectrally resolved photoluminescence (PL) microscopy of individual ZnO NC by directly populating the defects states using low-energy laser excitation. The temporal evolution of PL intensities shows discrete blinking behaviors, suggesting that the NCs are detected near single-particle levels. The transition energies of individual NCs are found to fluctuate around their mean position (2.25 eV) by ∼0.130 eV, which is attributed to particle size distribution and defects densities associated with each NC. The spectral line width associated with defect emission envelope of ZnO NCs is found to be inherently broad (200-400 meV), which further establishes the presence of multiple closely spaced defect energy levels within every ZnO NC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.